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ABSTRACT

When a controller is implemented in a diNtal computer, with A/D and D/A conversion,

the numerical errors of the computation can drastically affect the performance of the control

system. There exists realizations of a given controller transfer function yielding arbitrarily large

effects from computational errors. Since, in general, there is no upper bound, it is important to

have a systematic way of reducing these effects. Optimum controller designs are developed

which take account of the digital round-off errors in the controller implementation and in the

A/D and D/A converters. These results provide a natural extension to the LQG theory since they

reduce to the standard LQG controller when infinite precision computation is used. But for finite

precision the separation principle does not hold.

9J



I. INTRODUCTION

LQG controllers are normally designed under the assumption that computer implemention

will be perfect (this is the infinite wordlength assumption for state variable computation).

However, real control systems are subject to the effects of finite wordiength computation. These

round-off errors should not be ignored in the design of the controller. The influence of these

errors on the control system and the optimum controller design considering their effects are the

subjects of this paper.

We consider the problems that arise with fixed-point arithmetic and the finite word length

of digital computers. This paper was motivated by the work of Kladiman and Williamson

[1989]. Mulhs and Roberts [1976] and Hwang [1977] in the field of signal processing first

revealed the fact that the influence of round-off errors on digital filter performance depends on

the realization chosen for the filter implementation. To minimize round-off errors these papers

suggest a special coordinate transformation T prior to filter (or controller) synthesis.

This is in stark contrast to frequency domain approaches to control, which regard as

irrelevant (and hence is completely ignored) the state space realization of the controller transfer

function.

The idea of applying a coordinate transformation prior to controller synthesis has been

applied to Kalman filter and LQG controller design problems, Williamson [1985], Kladiman and

Williamson [1989]. One may select the wordlength of the computer to insure that the resulting

degradation in the performance from round-off error is less than a certain percentage of the ideal

behavior of the standard Kalman filter or LQG controller without round-off error. This approach

was adapted by Sripad [1981] in the design of Kalman filters, and later by Moroney, et. al [1983]

for LQG controIler design. In these papers the standard Riccati equations are solved, followed

by a coordinate transformation to reduce the effects of round-off errors. We shall call these

controllers LQGT to indicate a standard LQG controller followed by an "optimal" coordinate

transformation T. This transformation depends on the control gains, hence, we put the word

optimal above in quotes, because the standard LQG gain is not the optimal gain for the round-off
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error problem. The optimum solution is to design the controller which directly takes into

account the round-off errors associated with a finite word length implementation, rather than

merely performing a coordinate transformation T on the LQG controller after it is designed. The

optimal state estimation problem was solved by Williamson [1985]. This leads to a modified

Kalman filter. The problem of optimum LQG controller design in the presence of round-off

error was studied by Kadiman and Williamson [1989]. This paper worked with upper bounds

and numerical results showed improvement over earlier work, but their algorithm does not

provide the necessary conditions for an optimal solution. This paper provides the necessary

conditions and a controller design algorithm for the solution of this problem. We shall call this

controller LQGFw.

With a fixed point implementation, the states of the LQGFw controller are properly scaled

to reduce the possibility of overflow. There are many scaling criteria available. The method we

shall use is the variance oriented procedure, 12-norm scaling [-Hwang 1977]. We assume round-

off errors are additive. This tends to be supported by the literature on state quantization, whereas

quantization of coefficients leads to multiplicative errors [Williamson 1985].

The organization of the paper is as follows. In Section 2, the problem of LQG controller

design in the presence of round-off errors is formulated. The importance of the coordinates of

the controller will be discussed in Section 3. Section 3 summarizes the needed results from

[Kadiman and Williamson 1989], and our new results on upperbounds of finite wordlength

effects. It is shown that the portion of the LQG cost contributed by these errors will range from

arbitrarily large to an achievable lower bound with the variation of the realization of the

controller (variation of the choice of coordinates). The coordinate achieving the lower bound is

described. In Section 4, the optimization problem is discussed in terms of chosing both the

controller parameter matrices and the realization coordinate simultaneously. The necessary

conditions are derived for the optimization problem. An algorithm is then presented for the

designs of the optimal LQGv-w controller. The standard LQG and the LQGFw controller are

compared in Section 5. Some conclusions appear in Section 6.
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II. Round-Off Error and LQG Controller Design Problem

In this section, we formulate the LQG controller design problem when round-off errors are

present. The formulation procedure follows the original ideas of Mullis [1976], Hwang [1977]

and the ideas of Williamson [1985], Kadiman and Williamson [1989]. Let us assume, for the

study of round-off error, the discrete controller is designed from a discrete model of the plant to

be controlled. We then introduce a model for finite wordlength effects into the discrete design

problem.

Considering the following discrete-time model of a time-invariant plant:

xp (k + 1)

zp(k)

yp (k)

= Apxp(k) + Bpu(k) + Dpwp(k)

= Mp Xp(k) + Vp(k)

= C_xp (k)

(1)

where Xp is the state np-vector, u, yp and Zp are the control nu-vector, output ny-vector,

measurement nz-vector, vp and Wp are assumed to be mutually independent, zero mean, discrete

white Gaussian noises with covariance matrices Vp and Wp, respectively.

The controller that one might desire to implement is described by following equations:

xc(k + 1) = Acxc(k) + Bcz_(k)u(k) Ccxc(k) + Dczp(k)
(2)

where Xc is the controller state no-vector, u and zp are the control and measurement vectors

described in the plant model. In a finite wordlength digital computer, the controller state x c and

measurement variable z.p will be quantized at each time of computation. Considering the

quantization process, computation (1) and (2) cannot be accomplished. Instead the computation

is described by
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xp(k + l) = Apxp(k) + BpQ[u(k)] + Dpwp(k)
zp(k) = Mpxp(k) + vp(k)

yp(k) = Cpxp(k)

xc(k + 1) = AcQ[xc(k)] + Bc Q[zp(k)]

u(k) = CcQ[xc(k)] + Dc Q[zp(k)]

(3a)

(3b)

where Q[-] stands for the quantization process. Assuming an additive property of the round-off

error, we can model the quantization process by:

Q[u(k)] = u(k) + eu(k)

Q[xc(k)] = xc(k) + ex (k)

Q[zp(k)] = zp(k) + ez(k)

D/A (4a)

control computer (4b)

A/D (4c)

where eu is the round-off error resulting from D/A conversion, ex (k) is the error resulting from

quantization and ez(k) is the error resulting from A/D conversion. We do not claim that this

assumption is always justified, but we invoke this common assumption in this paper, since one

cannot optimize with respect to coefficient errors directly. One can only evaluate designs with

respect to coefficient errors. There are many such evaluations in filter theory, and we shall add

our own numerical evaluation in this paper. All such evidence points to a conclusion that

controller structures that are good with respect to state quantization tend to also be good with

respect to coefficient quantization.

It was shown [Sripad 1977] that, under sufficient excitation conditions, the round-off error

ex(k) can be modeled as a zero mean, white noise independent of wp(k) and vp(k), with

covariance matrix Ex,

Ex = qI, q _ @2-22-2_ , (5a)

where _ is the worctlength of the control computer. Similarly, we assume the D/A conversion

error eu(k) and the A/D conversion error ez(k) to be zero mean, mutually independent white
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noise and also independent of wp(k), vp(k) and ex(k) with covariance matrices Eu and Ez,

Eu = %1, qu 6__.12_2-21_ (5b)

Ez=qzI, qz '_ 1= -_- 2 -213_ (5c)

where 13uand 13z are the wordlengths of D/A and A/D converters.

obtain a closed-loop system model including finite wordlength effects,

xp(k + 1) = Apxp(k) + Bpu(k) + Dpwp(k) + Bpeu(k)zp(k) = Mpxp(k) + vp(k) (6a)

yp(k)= Cpxp(k)

xc(k+ I)= Acxc(k)+ Bczp(k)+ Acex(k)+ Bcez(k)u(k)= Ccxc(k)+ Dczp(k)+ Ccex(k)+ Dcez(k) (6b)

We seek thecontrollertominimize thefollowingcostfunction

J = lira E {yp(k)Qpyp(k) + u*(k)Ru(k)} (7)
k ---_ **

where u and yp are again control and output vectors, and Qp and R are the weighting matrices.

combining (6a) and (6b), and using the following notation for the vectors andAfter

matrices:

[x=(k)J ; y(k) = Lu(k) J

D= ;G= Bc Ac ;I°= ;II= ;I2= ;

the closed-loop system is compactly described by
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x(k+ 1)= [A + BGM]x(k)+ Dwp(k)+ BOIl vp(k)+ BGI2ex(k) + BOIl ez(k)+ BI1eu(k)
y(k)= [C + IoGM]x(k)+ IoGI1vp(k)+ IoGI2ex(k)+ IoGI1ez(k) (9)

andthecostfunction(7)maybewritten

J= lim E {y* (k)Qy(k) }.
k --._*_

(10)

Now, substitute (9) into (10), since eu(k), ex(k), ez(k), wp(k), and vp(k)

independent,

J = tr{X[C + IoGM]*Q[C + loOM]} + tr{Vp(IoGI1)'Q(IoGI1)}

+ tr{Ex(IoGI2)*QIoGI2)} + tr{Ez(IoGI1 )" Q(IoGI1 )}

are mutually

(lla)

where X is the state covariance satisfying:

X = [A + BGM]X[A + BGM]" + DWpD" + (BGI1)Vp(BGI1)*

+ (BGI2)Ex(BGI2)" + (BGI1)Ez('BGI1)* + BI1F_,u(BI1)* (llb)

We can decomposite Jill e,qn. (1 la) into two terms:

J = Jw_ + Je (12a)

where

Jw-¢ _ tr{ Xl [C + IoGM]* Q[C + loOM] } + tr{ (Vp + Ez)(IoOI1 )* Q(IoOI1 ) } (12b)

X 1 = [A + BGM]X_ [A + BGM]* + DWpD* + (BGI1)(Vp + Ez)(BGI1)* + BI1Eu(BI 1)* (12c)

and

Je _=tr{Xe[C + IoOM]*Q[C +IoGM] } + tr{Ex (IoGI2)'Q(IoGI2) }

Xe = [A + BGM]Xe[A + BGM]* + ('BGI2)ExfBGI2)*

(12d)

(12e)

where X = X 1 + Xe. J_ is the portion of the performance index contributed by disturbances

%(k), ez(k), wp(k) and vp(k). Je is the portion contributed solely by round-off error ex(k).
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To prevent the overflow in controller state variable computation, we must properly scale

the state variables. We use the 12-norm scaling procedure which is written as:

[X1(2,2)]ii =s i=l, "" ,nc (13)

where X1 (2, 2) is the (2.2) subblock matrix of X 1 matrix (the controller subblock), and [']ii

stands for the ith diagonal element of the matrix. Equation (13) requires that the controller state

variables have variance equal to s when the closed-loop system is excited only by outside

disturbance and measurement noise. We call (13) the scaling constraint.

Therefore, the optimization problem is

min J = rain (Jwv + Je) , (ld)
G G

subject to (12-13).
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HI. Contribution of Round-Off Error to the LQG Performance Index

In this section, we discuss the Je term in (12a) and defined by eqn. (12d) which is the

portion of the LQG cost function contributed by round-off errors. This portion of the cost

function is coordinate dependent. It is unbounded from above, (that is, it can be arbitm_rily

large), but it has an achievable lower bound, which can be achieved in an optimal coordinate.

The lower bound result was obtained by [Moroney et_ al. 1983] and [Kadiman and Williamson

1989]. The consn'uction of this optimal coordinate is discussed in this section, where we assume

G is some given matrix (we shall optimize G later).

We will first present three key lemmas, which form the basis for the results of this section.

Lemma 1. [Mullis and Roberts 1976, Hwang 1977].

Given any n x n matrix M, there exist a (non-unique) unitary matrix U such that (UMU*)jj = S

for all j, if and only if tr(M) = sn

[]

Lemma 2. [well known]

For any two positive definite matrices P and Q, let Li ['] denote the i th eigenvalue of matrix ['].

Then,

a) )_i[QP] >0 for alli

b) The Li[QP] are invariant under the transformation P = TPT* and 0 = T-*Q T-1 where T is

nonsingular.

[]

Lemma 3.

Let a scalar J be defined by
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J Atr{rr'pl (15a)

where the np x np nonsingular matrix T is constrained by

(TlT-*)ii = s for all i (15b)

and P is a positive definite matrix. Then over the set of all nonsingular matrices T constrained

by (15b),

a) J is not bounded from above.

b) J is bounded from below (J > _ by

l r'-
_J_="--:--[tr('qP)] 2 (16a)

Snp

where

and "_ is symmetric.

P= _- _- (16b)

c) J_in (16a) is achievable by the matrix T."

T = T A_Wti-ltVt (17a)

where Ut, Vt are unitary, I-It diagonal, satisfying

UtI_It2U_ = Snp_- (17b)

[VtFlt2Vt]ii = s for all i . (17c)

[]



Statementsb) and c) areminor modificationsof the resultsobtainedby [Mullis and

Roberts1976]and[Hwang,1977].Theproofof a) appearsin AppendixA. An algorithmfor

solving(17b),(17c)isgivenin AppendixB.

Thecontributionof finite wordiengtherrorin thecostfunctionis describedby equations

(12d)and(12e).ThisJetermcanalsobewrittenas:

Je= tr{Ke(BGI2)Ex(BGI2)*} + tr{Ex(IoGI2)*Q(IoGI2)}

Ke = [A + BGM]*Ke[A + BGM] + [C + IoGM]*Q[C + IoGM] .

(18a)

(18b)

Since Ex = qI, we then have:

Je = q tr{ (BGI2)* Ke (BGI2) + (IoGI2)* Q(IoGI2 ) } • (19)

We can easily check that the (2, 2)th subblock matrix of Ke (the controller subblock Ke(2, 2))

satisfies:

I_(2, 2) = (BGI2)*Ke(BGI;)+ (IoGI2)*Q(IoGI2) . (20)

Substituting (20) into (19) reduces (19) to

J_ = qtr[I_(2, 2)] .

Hence, the minimization of Je reduces to the problem:

minJe, Je=qtr{Ke( 2,2)1 (21)

subject to (18b), (13) and (12c). From the singular value decompositions

X 1(2, 2) = UxZxUx

_h * aA2)UxZx U_Z, kUkZx Ux Ke (2, =

(22a)

(22b)

then Ux, Uk are unitary, Zx, Zk are diagonal and
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Zk. _=diag {... _[Ke(2, 2)X1(2, 2)] ... } . (22c)

Suppose we begin our study with the closed-loop coordinate transformation T as:

T= , _ ,
UxZx Uk

Then, after this coordinate transformation as suggested by Kadiman and Williamson [1989]:

-- * ½ * -1- * ½ -* -*
X l(2,2)=(Uxx xUk) Xl(2,2)(UxX xUk ) =I

-- tit 1 * *

Ke(2, 2) (UxX_Uk) I_(2, * ½ *= 2)(UxZx Uk) = Y--'k•

(23)

(24)

(25)

If we take one more controller coordinate transformation Tc, the index Je and its constraint

equations, (after we substitute (24) and (25) into (13) and (21)), become

Je = qtr[TeT_Zk]

[T_lT_*]ii=s, i=l, "-" ,nc.

(26a)

(26b)

Since, from Lemma 2, _ in (22c) is coordinate independent, we may i_mnore the Ke and X 1

calculations (18b) and (12c) and concentrate on Tc in (26). Then, by applying Lemma 3 on

equation (26), we have following theorem.

Theorem 1. The round-off error term Je in the LQG performance index (12d) and (12e), and

constrained by the scaling constraint eqn. (12c), (13), is controller coordinate dependent. It is

unbounded from above when the realization coordinate varies arbitrarily. It is

bounded from below by the following lower bound:

j- q- _ tr Z t (27)
--e sn c

The lower bound is achieved by the following controller coordinate transformation:

½ *T = UxZ x UkUtIitVt
--'C

(28a)

where Ux, Uk, Ut, Vt are unitary matrices, Zx, I-It are diagonal matrices, subject to the
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constraints.

X 1 (2, 2) = Ux2xUx

2_UxKe(2 ' " _,_2)UxZx = U_Y--kUk

(28b)

(28c)

snc 2k
U_FI72U_ - (28d)

tr2k

2

[VtI"lt Vt ]ii = s, i = 1, • • • , nc (28e)

[]

To find the optimal coordinate transformation T in (28a), we must solve (28d), (28e) to
--C

obtain Ut, Flu Vt. The equations (28d), (28e) are, however, special cases of (17b), (17c), where

P is the diagonal matrix Zk. An algorithm is given in Appendix B to compute the Ut, I-It, Vt

needed for (28a).

The conclusion of this section is that the problem min Je is solved by the coordinate
Tc

transformation given by (28a).



IV. LQG Controller Design in the Presence of Round-Off Errors

As discussed in Section 17, when round-off error is present, the LQG performance index

can be decomposed into two terms. One term contains the influence of disturbance and

measurement noise, the other term is conn'ibuted by round-off errors. Although the first term is

not influenced by the coordinate of the controller, the second term is critically dependent on the

coordinate. An optimal coordinate transformation is given by (28a). With the scaling

requirement of the controller state variables to prevent overflow, we have a different

optimization problem now for controller design comparing to the original optimal control design

problem without round-off errors. In this section, we will discuss the controller design.

Let us first present a useful result.

Lemma 4. Suppose Jkx _=_ _ki[Kii, i)X(j, j)] where K(i, i) and X(j, j) are the (i, i)th subblock
l=1

of K and (j, j)th subblock of X respectively. Define

VkJkx A _ j
---"_'_" kx ,

then:

a) VkJ_(p,q) = 0 when p _ i or q _ i

[E -1 (i, j)]]th-row[E(i, j)]_--colX(j, j)

VkJkx(P'q) = 2t_ - "_[K(i, i)X(j, j)]
when p = i and q = i

(29a)

(29b)

b) VxJ_(p, q)=0 when p¢jorqcj (29c)

1 l_ K(i, i)[E -1 (i, j)] _th-row[E(i, j)] l*th---¢o] when p = j and q = j (29d)
VxJkx(P, q) = _- _ _/_.t[-K(i, i)X(j, j)]

where _TkJkx(P , q) and VxJkx(p, q) are the (p, q)th subblock of VkJkx and VxJkx, E(i, j) is the

eigenvector matrix of matrix K(i, i)X(j, j)
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The proof of the lemma is given in Appendix A.

The LQG controller design problem, when finite wordlength effects are taking into

account, are described by the equations (12-14). This is denoted as the LQGFw controller.

However, the scaling constraint (13) can be always satisfied by properly choosing the

coordinates of the controUer, so the problem breaks up into two parts: Finding G and finding its

optimal coordinate transformation Tc to satisfy (12), (13) and (14). On the strength of Section 3,

we can therefore write the optimization problem as

rain J = rnin (Jwv + Je) = rain[rain (Jwv + Je)]
G,T, G,T, G T,

since Jw_ is constant in terms of the variation of Tc, we have

min J = min [Jw,, + rnin Je] (30)
G,T, G T,

Assume J _ min Je is given by (27), from Theorem 1.
"_ Tc

problem becomes

Hence, the equivalent LQGzw design

min[Jw_ + J] , (30a)
G

subject to (12c) and (18b) where

Jw_ = trX1 (C + IoGM)*Q(C + IoGM) + tr(Vp + Ez)(IoGI1)*Qfl0GI1)

J = q (tr _k) 2

---e sn¢

(30b)

(30c)

where Zk is defined by (22c), and the transformation Tc which yields J is given by the

algorithm in Appendix B, and may be computed only after the optimal G is obtained from (30).

The following theorem states the necessary, conditions of the optimization problem (30).

Theorem 2:

Necessary conditions for G to be the solution of the optimal controller design problem (30) are."

loft



[A + BGM]X1 [A + BGM]* + DWpD* + (BGI1)(Vp + Ez)(BGI1)* + BI1Eu(BI1)" - X1 = 0 (31a)

[A + BGM]* I_[A + BGM] + [C + IoGM]*Q[C + IoGM] - Ke = 0

[A + BGM]" K2[A + BGM] + [C + IoGM]*Q[C + IoGM] - K2 + Vx = 0

[A + BGM]K3 [A + BGM]* - K3 + Vk = 0

(I_QIo + B*K2B)G(MX1 M* + I1 (Vp + Ez)I_) + (I_QIo + B*KeB)GMK3M* +

+ B* (K2AX1 + KeAK3)M* = 0

(31b)

(31c)

(31d)

(31e)

where Vx has 4 subblocks as

Vx(i, j)=0 i_e2 or j,2

2, 2)[E-11  o rZl  ol }
Vx (2, 2) = q--fl-tr 2k

Snc

and V k also has 4 subblocks as

Vk(i, j)=0 i.2 or j*2

1I-E-1] _ow I-E]_colXl (2, 2)

Vk(2, 2)= tr £k _:g-.
q

sn---7- l'=1 J

where E is the matrix of eigenvectors of the matrix Ke(2,2) X1 (2,2).

[]

The proof of theorem 2 is given in Appendix A.

Remark 1: The only terms in (31) which are affected by q are the two terms in (31c) and (31d)

denoted by Vx, Vk. Hence setting 13= *_ gives q = 0, Vk = 0, Vx = 0, K3 = 0, K2 = K_. Hence,

eqs. (31) reduce to the standard LQG design by setting [3= _. In this case, the 11 block of (31a)

reduces to the Kalman filter Riccati equation, and the 22 block of (31c) reduces to the control

Riccati equation. ] 0



Remark 2: We shall denote the controller satisfying (31) as the LQ_w controUer to indicate

that the LQGFw controller requires an additional step; the computation of T from Appendix B.
me

Now, we have following LQGFw controller design algorithm:

The LQGFw Algorithm

Step 1: Solve G from equations (31a)-(31e). This gives the LQG_ controller.

Step 2: Compute T c = UxZx UkUtI-ltVt by solving Ux,_x,gk,Ut,IIt,V t from (28b)-(28e),

using the G obtained in Step 1.

Step 3: G = is the optimal LQGvw controller for implementation.

[]

Remark: A natural algorithm to suggest in Step 1 is as follows. Suppose one desires to design a

LQGFw controller for 10 bit arithmetic.

(i) Solve (31a)-(31e) for _i = _:,o(hence, the standard LQG controller).

(ii) On the next iteration set _i = 32 (or whatever gives a reasonably small number for

Vx, Vk.

(iii) Iterate by indexing _i. Change _i by no more than one bit on each iteration. This gives

an "answer" in 32-10 = 22 iterations (but this manner of choosing step sizes in not

guaranteed to be sufficient to yield the optimal answer).

This is a "natural" homotopy method, since [3 is a natural choice for a homotopy parameter.
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V. Computation Examples

We consider an Euler Bernoulli beam modeled by its first 5 bending modes with 2 inputs

and 2 outputs. The modal frequencies appear in TABLE 1. In discrete controller design, the

discrete model is represented by the matrices {Ap,Bp,Cp,Dp,Mp,Wp,Vp} in equation (1).

These matrices are given in Appendix C for a uniform sample time At = 0.018 sec. The LQG

cost function is given by equation (7) with

Qp = 0.991 R = 0.01I .

The wordlength of the control computer is assumed to be 4 bits. Since the effects of D/A and

A/D conversion errors on the control system simply modify the effects of system disturbance

and measurement noise, we ignore these errors in the example. Both the standard LQG

controller and the LQGFw controller are computed for the system.

Frequency Damping Factor

Mode 1 3.4987e+00 9.9994e-03

Mode 2 1.3995e+01 2.1301e-02

Mode 3 3.1488e+01 4.5600e-02

Mode 4 5.5979e+01 8.0400e-02

Mode 5 8.7468e+01 1.2530e-01

TABLE 1. Frequencies and Damping Factors of the

Euler-Bernoulli Beam Example



ThestandardLQG controllerof coursewasdesignedwithoutconsiderationof round-off

errors(_ = _) andis labeledcontroller"LQG" in theTABLES. Controllersdenoted"LQGTi"

i = 1, • ••, 4 arethesameastheLQG,butfor acoordinatetransformationon thecontrollerafter

G is computed.Thematrices{Ac,Bc,Cc,Dc ] associated with the LQGT1 controller are shown

in Appendix C. In different coordinates Ti, TABLE 2 shows the finite wordlength contribution

Je in the closed-loop system cost, using the standard LQG controller. In the optimal coordinate

T 1 (controller LQGT1) the cost Je is about 500 times smaller than the cost in the original

coordinate design (controller LQG). This improvement is equivalent to increasing the

1

wore[length of the control computer by about 5 bits (5 = _-- log2500). The effect of

computational errors Je in two commonly used coordinates, Normalized Observable Hessenberg

Coordinates [Skelton 1988] and Phase Variable Coordinates, are also given in TABLE 2. The

fact that Phase Variable Coordinates are bad for computation is consistent with other findings in

filter synthesis [Williamson 1990]. The extreme high costs of the controller in a particular

coordinate (LQGT4) in TABLE 2 serves only to demonstrate that the cost Je can become

unbounded for some coordinates. The choice of coordinate "1"4was rather arbitrary and will not

be described or discussed further.



Controller ControllerCoordinates CostJ¢

LQGT1 Optimal 9.793

LQGT2 NormalizedObs.Hess. 2.692x 102

LQG PlantCoordinates 4.862× 103

LQGT3 PhaseVariable 9.486x 103

LQGT4 Coordinate"X" 1.472x 108

TABLE2. StandardLQGControllerin

DifferentCoordinates

TheLQGFwcontrollerwasdesignedby theLQGFwalgorithmgivenin Section4. The

controllermatrices{Ac,Bc,Cc,Dc} of this controlleralsoappearin AppendixC. TABLE 3

showsthe computedcostsof the standardLQG controller,the transformedLQG controller

(LQGT1),and theLQGFwcontroller(The"LQGFwwith coefficienterror" will be discussed

later). The costsfor threedifferent groups of excitations are computed in each case. The

applicable disturbances for J, Jy, and Ju include plant disturbance w, sensor noise v, and finite

wordlength error e. The applicable disturbance for Je, Jey, Jeu is only e, and for Jw,¢, Jwvy, Jwvu

are only wp and vp (no finite wordlength effects). Hence, these sums apply to the various cost

decompositions; Jy is the output term of J (the total cost), Ju is the control term in J, hence J =

Jy + Ju. Jwvy is the output term of J_ (the contribution of vp and wp in J), where Jy = Jwvy + Jey

and Je = Jey + Jcu, J = Jwv + Je. Jwvu is the control term of J_¢ and Ju = Jwvu + Jeu. As we can
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Disturbances

Applied

All v, w,

and e

Costs

Jy

LQG

Controller

4.8827e+03

2.8053e+03

LQGT1

Controller

3.0589e+01

2.3458e+01

LQGFw

Controller

2.1207e+01

2.0798e+01

LQGFw

with coeff, errors

2.4695e+01

2.4232e+01

Ju 2.0774e+03 7.1303e+00 4.0941e-01 4.631e-01

Je 4.8621e+03 9.9302e+00 2.0067e-01 1.4071e-01

e only Jey 2.7850e+03 3.1790e+00 1.3841e-01 1.0275e-01

J_u 2.0771e+03 6.7512e+00 6.2267e-02 3.7961e-02

J,,,,, 2.0659e+01 2.0659e+01 2.1006e+01 2.4554e+01

v and w J,,,,,y 2.0279e+01 2.0279e+01 2.0659e+01 2.0279e+01

only

Jwvu 3.7912e-01 3.7912e-01 3.4715e-01 4.2514e-01

TABLE 3. Evaluation of LQG Controllers in Plant Coordinates, Optimal

Coordinate and of the LQGFw Controller

see in the TABLE 3, even when the standard LQG controller is in its optimal coordinate

(LQGT1), the Je portion of the cost is still about 33% of the total cost (9.9302 compared to

30.589). By using the new LQGFw controller design algorithm, we reduce the Je portion of the

cost 50 times, compared to the LQGT1 controller and 24,110 times compared to the LQG

controller. In the latter case, this is equivalent to increasing the wordlength of the control

computer by about 7 bits, That is, controller LQGFw will give the same performance using 4 bit

arithmetic that LQG gives using 11 bits. Furthermore this improvement in output performance

is accompanied by a reduction in control effort RMS = _ vs. RMS = _. To
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conclude this point, we see that if both controllers use 4 bits, the difference in RMS output

performance is an order of magnitude ('_"6.798 vs. _). This kind of improvement in

performance can mean the difference between feasibility and infeasibility of some control

missions.

With the new controller, the round-off portion J_ of the cost is only 0.85% of the total cost

as opposed to 33% for LQG. Now let us discuss the cost Jw,,, which would be the total cost if

the closed-loop system was only excited by measurement noise vp and disturbance wp. That is,

suppose the LQG_v controller was designed for 4 bits, but evaluated using infinite bits. These

are the conditions of the standard LQG design, since there are no disturbances in the evaluation.

Jw_ of the LQGFw controller is a little higher than that of standard LQG controller. The output

term of the cost is also a little higher and the control term a little lower. These indicate that the

LQGFw controller is a little more conservative than the designed standard LQG controller. This

compromise in nominal performance allows robustness to computational errors. Note in

TABLE 3, that the quantifies that are optimized by the theory (under the given conditions are

shaded.

In the design of the LQG_-w controller, the equations (31a) to (31e) were solved iteratively

by a gradient method. The standard LQG controller in its optimal coordinate (LQGT1) was used

as the initial controller design for starting the iterative process. Figs. 1-3 illustrate the

convergence process for the LQGFw algorithm, plotting the total cost J, the wordlength cost J_,

the the output Jy and input Ju performances, versus iteration. The optimal coordinate

transformation played a crucial role in reducing the round-off errors (reducing the error by 3-4

orders of magnitude) as shown in Fig. 2. This was expected because the transformation was

formulated in the optimization problem. The LQG_-w controller was obtained after about 300

iterative computations, but note from Figs. 1-3 that after 120 iterations one might have stopped

with little loss.
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Coefficient Errors

In the introduction we promised some evaluation of the effects of coefficient errors. We

argued that even though the LQGFw controller is optimized only for state quantization it

performs well with coefficient quantization as well. To show this we introduced coefficient

errors in the controller by using 4 bit precision instead of infinite precision in the controller

coefficients. The key issue here is this. Quantization errors in the state degrades performance,

but does not destabilize, since the effect of e is just a disturbance (note that all controllers in

TABLEs 1 and 2 are stable). Coefficient errors can easily destabilize. Figure 4 shows the closed

loop pole locations using the standard LQG regulator (using infinite precision). The system is

stable as marked by the x's. When the controller coefficients are implemented using only 4 bit

arithmatic, some poles as indicated by the o's in Fig. 4, are outside the unit circle. Hence the

standard LQG controller is unstable using a 4 bit control computer.

Fig. 5 shows the improvement in the LQG controller by its optimal coordinate

transformation before synthesis. This is the LQGT1 controller. The poles (o's) are in improved

locations compared to Fig. 4, but the closed loop system is still unstable. The coordinate

transformation helped but not enough. Fig. 6 shows the LQG_v controller when controller

coefficients are implemented using only 4 bits. The system is stable, confirming for this

example improved robustness to controller coefficient errors, even though the controller has

been optimized only for errors in controller state computation. The performance degradation in

J, listed in the column "LQGFw with coefficient errors" in TABLE 3 is about 15% (compared to

nominal performance in TABLE 3).

Finally, we consider errors in both the plant and controller coefficients (due to

quantization to 4 bits). These results are summarized in TABLE 4, where the modal damping in

all modes is multiplied by parameter p. Hence p=l corresponds to the nominal plant in all of the

prior discussion. The range for stability using the LQGFw controller is .729 < p < 1.23,

demonstrating improved robustness over standard LQG controllers in the presence of errors in

plant and controller coefficients.
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Damping Error Factor p LQO

Controller

LQGT1

Controller

LQGFw

Controller

1.5242e+00 unstable unstable unstable

1.3717e+00 unstable unstable unstable

1.2346e+00 unstable unstable STABLE

1.1111 e+00 unstable unstable STABLE

1.0000e+00 unstable (Fig 4) unstable (Fig 5) STABLE (Fig 6)

9.0000e-01 unstable unstable STABLE

8.1000e-01 unstable unstable STABLE

7.2900e-01 unstable unstable STABLE

6.5610e-01 unstable unstable unstable

5.9049e-01 unstable unstable unstable

TABLE 4. Robustness Controllers with respect to modal damping

(4-Bit Wordlength Controllers)



VI. Conclusion

This papersolvesthe problemof designingan LQG controller to be optimal in the

presenceof finite word.lengtheffects(modeledaswhite noisesourceswhosevariancesarea

functionof computerwordlength).Thisnewcontroller,denotedLQG_¢, hastwocomputational

steps.First the gainsareoptimized,and thena specialcoordinatetransformationmust be

appliedto the controller. This transformationdependson the controller gains, so the

transformationcannotbeperformeda priori. (Hence, there is no separation theorem.) The new

LQGvw controller design algorithm reduces to the standard LQG controller when an infinite

word.length is used for the controller synthesis, so this is a natural extension of the LQG theory.

It was shown both theoretically and by example that the choice of controller coordinates

significantly influences the effects of computational errors on the control system and that there

exists an optimal set of coordinates in which to do these computations. Since we have not

obtained a closed form solution for the LQGvw problem, design of the LQG_-w controller by this

algorithm requires significant computation. Hence, the improvement of the new controller is

achieved at the expense of extra computational effort in design.
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Williamson. We gratefully acknowledge many helpful discussions with him, and the support of

this work by NASA grant NAG 1-857, Technical Monitor E.S. Armstrong.



Appendix A

1. Proof of Lemma 3

a) Using the singular value decomposition of T = UtFltVt, then the constraint equation (15b)

becomes

(Wtl-lt2V;)ii = s for all i (32)

from Lemma 1, above equation is equivalent to

tr(Ylt 2) = Snp . (33)

Now, let us study the cost '},of (15a). Using the inequality

tr(AA') >
[tr(AB')]2

tr(BB*)

we have a lower bound on 3'

2 *_= {u, nt ut P} = =(fit, u; _/b-)(ntu; _-)" }

m

k tr {(Ut [_._]_1 )(Ut [.__]_1 ), } tr{p_l } (34)

Now, to prove that 7 is unbounded from above, we prove that for any large scalar m > 0, we

have y('I') ->m for some '_. Let us choose a 'r having the following 1=it:

Irlt = diag (lrli) such that

- 1

fil =fi2= "'" =nr -2=

and
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I'In- 1 =
 mtrCP -1 )

%/2mstr(P -1 ) - 1
, lrlr_ = _m tr(F-I)

where m is so chosen that

1
m>

2str(P -1 )

Then

2mtr(P -1) - 1 + 1

mtr(P -1 ) mtr(P -1 )
-- Snp.

Hence the chosen _" satisfies the constraint (33). Now, we have:

nP _

(End) 2
(tr{M t1) 2 i=l (Mrb)2

---> -m
T> tr{p-1} tr{P -1} tr{P -1)

we then conclude the proof of part a). The proof of b) and c) follows next. The lower

bound and the matrix T are found by using following inequality:

(trR) 2 < tr(QRQ* )tr(Q-* RQ -1 ) (35)

the equality holds above when Q*Q = )v2I.

Let us assume T = UtlitVt, P = UpIIpU;, where lit and lip are diagonal, Ut, Vt, Up

are unitary matrices. Assume for the R and Q matrices in (35),

R = U;Upli U;U 

* --IA- *- --2- * " _IA -*-
Q*Q = U t UpIIp UpUtll t u I Upllp UpU t ,

(36)

(37)

then

- *- -- 14- *- ---2 "* " ---1/4" *"
(Q*Q)-I = tot Upll_" UpUtllt Ut Opllp UpU t .

Hence, we have: //7



* ½ * * ¼ * 2 * ¼ *
tr(QRQ*) = tr(RQ*Q) = tr[(Ut UpI-[p UpUt)(W t UpIXp UpWtIl t U t Uplip UpUt) ]

* 2 *
--- tr[UpXlpUpUtl'] t U t ] = tr[PTY*] = T

* a,6 * * -IA * -2 * -_,4 *
tr(Q-*RQ -t) = tr[R(Q* Q)-a] = tr[(Ut Upl"lp UpUt)(U t Up_"_p UpUtl-] t U t UpIIp UpUt) ]

* 2 * l= tr[-UpUtrlt Ut Up] = tr[rlt z]

From equation (33), and the above equation we have the following:

tr(Q-*RQ -1 ) = tr[Ht 2] = Snp

* ½ * 1A *
Now, ty(R) = tr(g t UpIlp UpUt) = tr(I'[_) -- tr(Upllp Up) -- trNlV-. Substitute the above

equalities back into inequality (35). We then have: [tr('_-)] 2 < Snp3', that is

[tr(',,_)]_
y> (38)

Snp

D*

Now, suppose the matrix T = utritV t yields the equality in (38). Since the equality in (35)

holds when Q*Q = )_2I, then we have:

* 2 *

-- 1A *---- __ 1A * =_.2I
U t UpX'ip UpUtl-I t U t Uplip UpU t

that is

--2-. _2- - .,-* _tg72U? -2 ., •Ut/-I tUt =.. Upllp Up _ --- _. Upl'_p Up (39)

Hence

_2
Substitute this Fl

_= = u, u,,n_v;U,
_.2

into equation (32) to obtain

* rio ,_n _,

(v,ut up-_u;,u#_)_ = s.

Then tr [-_)= Snp, hence X2 = l'_tr(rI_)=snp l"-_tr('_)'Snp N°w' substitute the ab°ve)'2
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into (39), to obtain

1//2

-- ---2--* snpUpI]p Up SnpN/P-
UtFit Ut = - (40)

Hence (38) yields the lower bound in (16a), and the matrix achieving this bound, shown by

(40), must satisfy (17b). (17c) can be easily deduced from (15b). This concludes the proof.

[]

2. Proof of Lemma 4

a) Proof of (29a): Since Jkx does not depend on K(p,q) for p ;e i or q ¢ i, we have:

O

VkJrx(P' q) - _K(p, q) Jk,x = 0

Proof of (29b): We need following equality (e.g. Page 444 of Skelton [1988]) to prove the

equation:

_.i[A] -1= [E ]ith_rowA[E]ith--eol

where _-i is the ith eigenvalue of A, and E the eigenvector matrix of A. Now, we have by

taking A = K(i, i)X(j, j)

Xi[K(i, i)X(j,j)] = [E-1 ]lth-rowK(i, i)X(j, j)[-E]tth--col

= tr{K(i, i)X(j, j)[E]lth--col [E-1]lth-row }

Hence from the differentiation rule OtrAB _ AT we get
OB

]i9



_X/ -: T T •
- FE j)

OK(i, i)

Then, we have:

8

8Jk.x 1 n OK(i, i) _a[K(i, i)X(j, j)]

0K(i, i) - _t_
- 5/kt[K(i, i)X(j, j)]

] it)v-row[E] rib--colX(j, j)=I_ [E-1T T •

- _/_a[K(i,i)X(j,j)]

The proof of part b) follows in a similar manner

[]

3. Proof of Theorem 2: Apply Lagrangian Multipliers K2, K3, then (30a)-(30c) leads to

minimization of

= tr{Q([C + IoGM]X 1[C + IoGM]* + (IoGI1)(V p + Ez)OoGI: )* )] }

+ tr{ K 2([A + BGM]X1 [A + BGM]* + DWpD* + (BGI:)(Vp + Ez)(BGI 1)" + (BI1)Eu (BI1)*

- X:)} + tr{K3([A + BGM]*Ke[A + BGM] + [C + IoGM]* Q

[C + IoGM]- I_)} + _ (trZk) 2
snc

Then
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g
3K2

- [A + BGM]X1 [A + BGM]* + DWpD" + (BGI1)(Vp + Ez)(BGI1)" + BI1Eu(BI1 )* - X1 = 0

0K3
- [A + BGM]* Ke[A + BGM] + [C + IoGM]*Q[C + IoGM] - Ke = 0

3X1
- [C + IoGM]*Q[C + IoGM] + [A + BGM]'K2[A + BGM] - K2 + Vx_ = 0

_Ke
- [A + BGM]K3 [A + BGM] ° - K3 + VkI = 0

Applying Lemma 4 on the above two equations, we can obtain Vx, and Vkl as stated in the

theorem. This verifies (31a)-(31d). Now

_G
- 2I;QCX1M" + 2I;QIoGMX 1M" + 2I;QIoGI2(Vp + Ez)I_ + 2B'K2AX1 M*

+ 2B'K2BGMX1M* + 2B*K2BGI 1(Vp + Ez)I_ + 2B'K1AK3 M°

+ 2B*K1BGMK3M* + 2I_QCK3M* + 2I_QIoGMK;M* = 0 ,

but since I_QC = O, then,

_G
- 2[I_QIoG(MX 1M ° + 11('Vp + Ez)I_) + B* (K2AX1 + K2AK 3)M*

+ (B'K1B + IoQIo)GMK3M* + B*K2BG(MX1 M" + I1 (Vp + Ez)I _)]

= 2[(I_QI 0 + B'K2B)G(MX1 M° + Ii(Vp + Ez)I_) + B*(K2AX 1 + K1AK3)M*

+ (B'K1B + I;QIo)GMK3M*] = 0 .

This verifies (31e).

[]
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Appendix B

We now present an algorithm (originally developed by Hwang [1977]) for solving (17b)

and (17c) for one set of solutions of Ut, I-It, Vt (The solutions for Ut, I-It, Vt are not unique).

Let _ in (17b) be written in terms of its singular value decomposition

"_" = UpY-1:,U_ (4])

where Up unitary, Zp diagonal.

Algorithm (Solving Ut, I-It, Vt in (17b) and (17c))

I. Take:

U t = Up (42a)

!
tr(_,p)

n, =
Snp

(42b)

Vt = Vn-lVn.-2 " " " Vi " " ' V2V1 (42c)

where Vi, i = 1, • • • , n - 1 is computed as follows:

li. Compute V 1" Let

Z 1 _FIt 2=diag(.-. clj'") (43a)

Assume _11 and ch_ are two numbers such that one of them is bigger than s, the other is smaller

than s. Then take V1 as:
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g 1 =

row --_

column

fl 0 ... 0 gl 0 ... O"

0 1 ... 0 0 0 ... 0

0 1 0

-ga 0 ... 0 fl 0 ... 0

0 ...... 1

............ 1

(43b)

where

:to,0-11fl L'G_ll (43c)

I 11 - Cll
gl = ' (43d)

(_1_ -- (Yll

Compute Vi" Let

2i = Vi-I "_-_-1V_-I = _-'i3

where Zi _]R (i-1)x(i-1) satisfies the property [2il]j j = S, Ei2 cIR (i-1)x(n-i+l) is a nonzero matrix,

and Zi_ can be written as

_-43 =

Assume (Jii and cYia are numbers such that one of them is bigger than s and the other is smaller

than s. Then take V i as



Computefi andgi as:

i row

W i =

tz row -4

i column

"1 0 0

o_column

0 0

0 ... fi 0 ... 0 gi ... 0

0 1 0

0

0 1 0

0 ... gi 0 ... 0 fi

0 0

0 0

0

... 0

(44b)

I (_ia -- 1 1 la
fi = (44C)

1gi = _ia - <Jii (44d)

[]

Computation of T
_C

T is formed as follows: T
_C "-¢

A TT*_._I/'2¥T* "IT T'T 'LI*
= _Jxx.,x _..JK_._t,xtvt

1) Compute the Covariance Matrix and Observability Grammian

I_ = [A + BGM]*K¢[A + BGM] + [C + IoGM]*Q[C + IoGM]

X1 = [A + BGM]X1 [A + BGM]* + DWpD* + (BGI1)(V p + Ez)(BGI1)* + BI1EuBI 1

Assume Ke(2,2), X1(2,2) to be (2,2) the subblocks of Ke and X 1 (the controller

subblocks).



2) ComputeUx, Zx, Uk.

Thesethreematricesarecomputedby applyingsingularvaluedecompositiononfollowing

matrices:

X1(2,2)= U_Ux

_a • m UkZkUkZx UxK2(2,2)UxZx =

3) Compute Ut, I'it, Vt.

Let us replace P matrix in the algorithm of appendix B as

P _ diag [_.i {Ke(2,2)X1 (2,2)}]

Then we can compute Ut, I'It, Vt by applying the algorithm on matrix P.
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Appendix C

DESIGN EXAMPLE OF ROUND-OFF LQG CONTROLLER

Plant Model: 10th Order Euler-Bernoulli Beam

Word-Length of the Assumed Computer: 4 bits

1) The 10th Order Euler-Bernoulli Beam Model for Controller Design

A

0.9980 0.0179 0 0 0 0 0

-0.2196 0.9968 0 0 0 0 0

0 0 0.9687 0.0177 0 0 0

0 0 -3.4620 0.9582 0 0 0

0 0 0 0 0.8469 0.0166 0

0 0 0 0 -16.4457 0.7993 0

0 0 0 0 0 0 0.5594

0 0 0 0 0 0 --43.6477

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0"

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0.0139 0 0

0.4340 0 0

0 0.1138 0.0095

0 -72.4045 0.0937



B

0.0014 0.0006-

0.1557 0.0716

-0.0004 0.0011

-0.0480 0.1257

-0.0012 0.0013

-0.1299 0.1440

0.0007 0.0012

0.0720 0.1164

0.0007 0.0007

0.0588 0.0588

D

0.0014 0.0006"

0.1557 0.0716

-0.0004 0.0011

-0.0480 0.1257

-0.0012 0.0013

-0.1299 0.1440

0.0007 0.0012

0.0720 0.1164

0.0007 0.0007

0.0588 0.0588

IO07.8297 0 7.1091 0 -1.3744 0 -8.3569 0 -6.2128]C= 6.2128 0-8.7875 0 6.2128 0 0 0 -6.2128J

6.2128 0 -8.7875 0 6.2128 0 0

w:I::l v=1.0003e-03 O]0 1.0003e-03

2) Designed Regular LQG Controller in Optimal Coordinate LQGT1
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mc D.

"--0.4582 --0.1633 -0.0133

0.4144 0.6040 0.4587

0.0849 -0.5217 0.5622

0.4753 -0.3503 0.2226

0.3326 0.0383 -0.5299

0.2946 --0.1855 -0.0.850

1.5034 --0.2726 -0.0095

0.5293 0.0908 -0.0359

-0.0468 -0.0574 -0.0709

-0.4312 0.1539 -0.0256

-0.1836 0.1574 -0.4386

-0.4122-0.0201 -0.0411

-0.3257 0.3373 0.2351

0.5105 -0.3084 0.0821

-0.1864 0.4324 0.3391

-0.3095-0.2941 -0.0605

-0.2270-0.0416-0.4845

-0.0617-0.3343 -0.0787

-0.0716-0.0416 0. i318

0.0559 -0.1463 0.4745

-0.1054 -0.2805 0.2304 -0.2815"

0.2748 0.1059 -0.0786 0.0379

0.0665 0.1975 -0.1651 0.2658

0.4446 0.1978 -0.1382 -0.0456

0.3306 0.2351 -0.1635 -0.1155

-0.7404 0.0085 0.1530 0.5389

-1.5704 -0.3867 -0.0236 -0.4084

-1.0273 -0.1971 -0.0491 0.4129

0.5827 -0.9215 -0.0746 0.2806

-0.0777 -0.3449 -0.9854 -0.6735

B c _-

0.1894 -0.2895"

-0.422 0.0230

--0.0296 0.0941

-0.0120 -0.0024

-0.0258 0.0940

-0.0611 0.0609

-0.2200 0.4919

-0.0737 0.2522

0.0252 -0.0076

0.0737 -0.0776

]D c _-

C c

"-1.9370 3.8601 4.1659 3.4458 1.8923

1.6850 -3.2381 -2.7357 -2.8624 -2.7744
-4.2436 -15.7358 -6.5380 3.7048 -5.33301

5.2406 11.5365 3.9625 -2.8745 -0.1711J

3) LQG_w Controller from the LQGvw Algorithm of Section 4



m c

0.3501 0.4306 -0.2223 0.3078 -0.5350 0.1231 0.1595 -0.2003 ---0.1024 0.1325"

--0.2004 --0.2851 -0.2294 0.1810 0.6715-0.4432 0.2756 0.1591 0.3525 -0.3974

--0.2033 0.2556 -0.0197 -0.8326 -0.8293 0.0885 --0.0605 0.2870 -0.0571 0.1147

-0.2973 -0.3621 0.6480 0.3770 --0.4095 0.4031 -0.2736 0.0125 0.0426 -0.0372

0.0308 -0.2207 -0.5168 -0.3001 -0.9847 1.1705 -1.0703 0.7456 -0.0979 0.1920

-0.1187 0.4836 0.0470 0.3655 0.2493 -1.0109 0.3516 0.5930 0.2744 ---0.3872

0.0089 -0.3363 0.0664-0.0869 0.0085---0.0712 -0.1936 0.113 0.3818 --0.5248

-0.3341 0.2935 0.1055 0.1309 0.2251---0.3631 -0.7912 --0.5655 -0.2610 0.3180

0.0731 -0.0312 -0.0788 -0.1349 --0.4369 0.2594 ---0.4096 -0.3895 0.7609 0.3237

-0.1129 0.0070 0.0781 0.1679 0.4955-0.3354 0.5865 0.4685 0.2460 0.6396

B e

-0.0134 0.0927"

0.0812 -0.1630

0.0706 --43.3987

0.2464 -0.6411

0.4583 -1.0134

-0.5942 1.0745

0.2455 ---0.2146

0.1121 0.0815

0.1013 -0.2475

--0.1510 0.3465

_0.4486e-04 --0.1328e-O4-Dc = 0.5913e--04 --0.1567e--04

0.8861 -1.8997 3.8592 -0.3107 5.3072 -0.7395 0.6339 -1.6517 0.9202 -1.3734]

Cc = -1.4019 2.2532 -2.6576 0.1575 -3.3358 1.2007 -0.5179 0.2062 -0.9969 1.3884J
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